Prepare test samples.
Before using the kit, quick spin tubes to bring down all solution to the bottom of tube.

When diluting samples and reagents, ensure that they are mixed completely and evenly.

Add TMB Stop Solution
Add test samples and standards to the precoated 96-well plate. Do not wash. Add tetramethylbenzidine (TMB) color developing agent, containing HRP substrate.

Duplicate assay wells are recommended for both standard and tumor cell growth and tumor-associated angiogenesis, suggesting that MIF is involved not only in inflammatory and immune responses but also in tumor cell growth. Thus, MIF cannot be clearly categorized as either a cytokine, hormone, or enzyme. 2 Owing to its inflammatory activities, MIF is a pivotal mediator of acute and chronic inflammatory diseases. MIF was found to function as a non-cognate ligand of CXCR2. Inflammatory leukocyte recruitment is dependent on MIF-CXCR2 and MIF-CXCR4 interactions. Additionally, MIF exerts at least some of its biological actions through binding to its extracellular cognate receptor complex consisting of CD74 and CD44. Studies have revealed a requirement for extracellular MIF in the steady-state activation of Rho GTPase family members, leading to cell growth and migratory phenotypes. As observed for CLF chemokines, MIF action is not limited to the extracellular space, but also occurs intracellularly, where it contributes to cell survival, cell cycle and homeostasis control. Intracellular MIF activities are linked to JAB1, p53, and TPOR activity of MIF.3

Background

Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in inflammatory and immune responses. MIF was originally discovered as a lymphokine involved in delayed hypersensitivity and various macrophage functions, including phagocytosis, spreading, and tumoricidal activity. Furthermore, it has been demonstrated that MIF was a proinflammatory cytokine and pituitary-derived hormone potentiating endotoxemia. This protein is ubiquitously expressed in various organs, such as the brain and kidney. It is produced constitutively by diverse cell types, and it circulates normally in the blood at low but immunoregulatory concentrations. MIF is not only secreted by immune cells, but also by parenchymal and tumor cells upon inflammatory and stress stimulation.1 Among cytokines, MIF is unique in terms of its abundant expression and storage within the cytoplasm, and, further, for its counteraction against glucocorticoids. Diverse pro-inflammatory or invasive stimuli lead to a rapid upregulation in the release of MIF from pre-formed stores in monocytes/macrophages and other cell types. MIF has unexpectedly been found to convert D-dopachrome, an enantiomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole. It was demonstrated that anti-MIF antibodies effectively suppress tumor growth and tumor-associated angiogenesis, suggesting that MIF is involved not only in inflammatory and immune responses but also in tumor cell growth. Thus, MIF cannot be clearly categorized as either a cytokine, hormone, or enzyme. 2 Owing to its inflammatory activities, MIF is a pivotal mediator of acute and chronic inflammatory diseases. MIF was found to function as a non-cognate ligand of CXCR2. Inflammatory leukocyte recruitment is dependent on MIF-CXCR2 and MIF-CXCR4 interactions. Additionally, MIF exerts at least some of its biological actions through binding to its extracellular cognate receptor complex consisting of CD74 and CD44. Studies have revealed a requirement for extracellular MIF in the steady-state activation of Rho GTPase family members, leading to cell growth and migratory phenotypes. As observed for CLF chemokines, MIF action is not limited to the extracellular space, but also occurs intracellularly, where it contributes to cell survival, cell cycle and homeostasis control. Intracellular MIF activities are linked to JAB1, p53, and TPOR activity of MIF.3

References

Elisa overview

Cell Applications ELISA Kits are based on standard sandwich enzyme-linked immunosorbent assay technology. Freshly prepared standards, samples, and solutions are recommended for best results.

1. Prepare test samples.
2. Prepare a protein standard of the target protein.
3. Add test samples and standards to the pre-coated 96-well plate. Do not wash.
5. Add Avidin-Biotin-Peroxidase Complex (ABC) solution. Wash.
6. Add Tetramethylbenzidine (TMB) color developing agent, containing HRP substrate.
7. Add TMB stop solution.
8. Subject the plate to analysis.

Notes:

• Before using the kit, quick spin tubes to bring down all solution to the bottom of tube.
• Duplicate assay wells are recommended for both standard and sample testing.
• Do not let the 96-well plate dry, this will lead to inactivation of plate components.
• When diluting samples and reagents, ensure that they are mixed completely and evenly.
• Pre-warm diluted ABC and TMB solutions at 37°C for 30 min before use to avoid variable temperature effects.
• For washes, use TBS or PBS. Do not touch well walls.
• A protein standard is included in the kit. A protein standard detection curve should be generated with each experiment, no more than 2 hours prior to the experiment.
• The user will determine sample dilution fold by estimation of target protein amount in samples.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

5820 Oberlin Dr. Suite 101, San Diego, CA 92121 858-453-0848 800-645-0848 www.cellapplications.com
ELISA PROTOCOL

Preparation of Test Samples
1. Process Test Samples in the following manner:
 - **Cell culture supernate, tissue lysate or body fluids:** Remove particulates by centrifugation, analyze immediately or aliquot and store at -20°C.
 - **Serum:** Allow the serum to clot in a serum separator tube (about 30 min) at room temperature. Centrifuge at approximately 1000 x g for 15 min. Analyze the serum immediately or aliquot and store frozen at -20°C.
 - **Plasma:** Collect plasma using heparin as an anticoagulant. Centrifuge for 15 min at 1000 x g within 30 min of collection. Analyze immediately or aliquot and store frozen at -20°C.

2. Estimate the concentration of the target protein in the sample and select a proper dilution factor such that the diluted target protein concentration falls within the 156-10000 pg/ml standard curve range. Depending on the sample, several trial dilutions may be necessary. Dilute the sample using the provided diluent buffer, mixing well. Suggested working dilutions of samples are as follows:

<table>
<thead>
<tr>
<th>Target Protein Concentration (pg/ml)</th>
<th>Sample Working Dilution</th>
<th>Sample Vol. (µl)</th>
<th>Diluent Buffer Vol. (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-1000 pg/ml</td>
<td>1:10</td>
<td>1 µl</td>
<td>99 µl</td>
</tr>
<tr>
<td>15-100 pg/ml</td>
<td>1:10</td>
<td>10 µl</td>
<td>90 µl</td>
</tr>
<tr>
<td>156-10000 pg/ml</td>
<td>1:2</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>≤156 pg/ml</td>
<td>n/a</td>
<td>100 µl</td>
<td>n/a</td>
</tr>
</tbody>
</table>

3. If samples will be assayed within 24 hours, store at 2-8°C. For long-term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.

Preparation of Standard Solutions (156-10000 pg/ml)
4. Reconstitute the Lypophilized Recombinant Protein to make a 10,000 pg/ml MIF solution. Add 1 ml Sample Diluent Buffer to a tube of lyophilized protein, keep the tube at room temperature for 10 min. Mix thoroughly.
5. Label 6 eppendorf tubes with the MIF protein concentrations to be prepared by serial dilution: 5000pg/ml, 2500pg/ml, 1250pg/ml, 625pg/ml, 313pg/ml, 156pg/ml.
6. Aliquot 0.3 ml of the Sample Diluent Buffer to the labeled tubes.
7. Serially dilute the protein standards into their respectively labeled tubes. Transfer 0.3 ml from the 10000pg/ml MIF Solution to the 5000pg/ml eppendorf tube and mix thoroughly. Transfer 0.3 ml of the 5000pg/ml solution to the 2500pg/ml tube and mix thoroughly, Transfer 0.3 ml of the 2500pg/ml solution to the 1250pg/ml tube and mix, and so on to make the 625, 313 and 156 pg/ml solutions.
8. Store at 4°C until use.

Loading the 96-well Plate
9. Aliquot 0.1 ml of the sample diluent buffer into a control well to serve as the Blank. This will yield the O.D.450(Blank) reading.
10. Aliquot 0.1 ml of the standard solutions of the Preparation of Standard Solutions (156-10000pg/ml) into empty wells of the precoated 96-well plate. Duplicate measurements of standards are recommended.

11. Aliquot 0.1 ml of each properly diluted test sample to empty wells prepared in Step 2. Duplicate measurements of each test sample are recommended.
12. Cover the 96-well plate and incubate at 37°C for 90 min.
13. During the Step 12 incubation period, prepare a stock of Biotinylated 1:100 Antibody Working Solution. Count the number of reactions and multiply by 0.1 ml/well for the Working Solution total volume (preparation of 1-2 reactions in excess of the number of wells is recommended). Dilute the Biotinylated Antibody to 1:100 in Antibody Diluent Buffer and mix thoroughly. Use the working solution within 2 hours.
14. Upon completion of the 90 min incubation of Step 12, remove the cover of the 96 well plate and discard plate well contents. Blot the plate onto paper towels or other absorbent material. DO NOT let the wells completely dry at any time.
15. Add 0.1 ml of the Biotinylated 1:100 Antibody Working Solution (prepared in Step 13) to each well and incubate the plate at 37°C for 60 min.
16. During the incubation period of Step 15, prepare a stock of ABC Working Solution. Count the number of reactions and multiply by 0.1 ml/well for the Working Solution total volume (preparation of 1-2 reactions in excess of the number of wells is recommended). Dilute the ABC Stock Solution to 1:100 in ABC Diluent Buffer and mix thoroughly. Pre-warm the ABC working solution at 37°C for 30 min before use. Use the working solution within 1 hour.
17. Upon completion of the 60 min incubation of Step 15, wash the plate 3 times with 0.3 ml TBS or PBS. For each wash, leave washing buffer in the wells for 1-2 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
18. Add 0.1 ml of prepared ABC Working Solution (prepared in Step 16) to each well and incubate the plate at 37°C for 30 min.
19. During the incubation period of Step 18, pre-warm TMB Color Developing Agent at 37°C for 30 min before use.
20. Upon completion of the 30 min incubation of Step 18, wash the plate 5 times with 0.3 ml TBS or PBS. For each wash, leave the washing buffer in the wells for 1-2 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
21. Add 90 µl of the pre-warmed TMB Color Developing Agent into each well and incubate at 37°C for 15-20 min (shades of blue can be seen in the wells with the four most concentrated Protein Standard Solutions; the other control wells should show no obvious color).
22. Add 0.1 ml of the TMB Stop Solution to each well. The acidic stop solution will change the mixture color to yellow. The yellow intensity is proportional to the amount of target protein captured by the plate.
23. Read the O.D. absorbance at 450nm in a microplate reader within 30 min after adding the stop solution. These readings are the O.D.450(Reading).

Calculating Protein Concentration
- For all wells, determine O.D.450(Relative): O.D.450(Relative) = O.D.450(Reading) – O.D.450(Blank)
- Plot the standard curve: plot O.D.450(Relative) of each standard solution (Y) vs. the respective concentration of the standard solution (X). See Figure 1 for a typical standard curve.
- The MIF concentration of the samples can be interpolated from the standard curve. Multiply the interpolated concentration by the dilution factor to obtain the target protein concentration in the sample.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.